2.1 Determining Average Rate of Change

A Average Rate of Change

$y=f(x), \quad y_{1}=f\left(x_{1}\right), \quad y_{2}=f\left(x_{2}\right)$
$\Delta x=x_{2}-x_{1}$ (change in variable x)
$\Delta y=y_{2}-y_{1}($ change in variable $y)$
The Average Rate of Change (ARC) in the y variable with respect to the x variable, on (over) the interval [x_{1}, x_{2}] (or $x_{1} \leq x \leq x_{2}$) is given by:

$$
A R C=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=m_{S}
$$

Note. The unit of $A R C$ is:

$$
\operatorname{unit}(A R C)=\frac{\operatorname{unit}(\Delta y)}{\operatorname{unit}(\Delta x)}
$$

Note: The Average Rate of Change (ARC) is equal to the slope of the secant line (m_{S}) passing through the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$.

Ex 1. A rock is launched vertically upward. The height h (in meters) at the time t (in seconds) of the rock is given by $h(t)=100 t-10 t^{2}$. Find the average velocity (ARC) over the third second of motion.

B Secant Line

Let $y=f(x)$ be a function and $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ two points on its graph.

The slope of the secant line (m_{S}) that passes through the points P and Q is given by:

$$
m_{S}=\frac{r i s e}{r u n}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=A R C
$$

Ex 2. In the figure below is represented the position h (in kilometers) at the time t (in hours) of a baloon. Describe the motion of the ballon in terms of average velocity.

Ex 3. Prove that the function $y=f(x)=10^{x}$ is increasing over its domain.

D Decreasing Functions

A function f is decreasing over the interval (a, b) if
$A R C=m_{S}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}<0$ for all x_{1}, x_{2} in the
interval (a, b).

Ex 4. Prove that the average rate of change is constant for a linear function.

Ex 5. During an experiment the number of bacteria is measured every minutes (for ten minutes) and the results are presented below:

```
    t N
    O 100
    1200
    2400
    3 800
    41600
    5 3200
    6400
    712800
    82500
    9 51200
    10 102400
```

Compare the average rate of change during the first two minutes and the average rate of change during the last two minutes of the experiment.

Ex 6. For a given function, the average rate of change over [2,4] is 5 and the average rate of change over $[4,7]$ is -2 . Find the average rate of change over [2,7].

Reading: Nelson Textbook, Pages 68-75
Homework: Nelson Textbook, Page 76: \#4, 8, 10

