2.1 Determining Average Rate of Change

A Average Rate of Change	B Secant Line
$y = f(x), y_1 = f(x_1), y_2 = f(x_2)$ $\Delta x = x_2 - x_1 \text{ (change in variable } x \text{)}$ $\Delta y = y_2 - y_1 \text{ (change in variable } y \text{)}$ The Average Rate of Change (ARC) in the y variable with respect to the x variable, on (over) the interval [x_1, x_2] (or $x_1 \le x \le x_2$) is given by: $ARC = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = m_S$ Note. The unit of ARC is: $unit(ARC) = \frac{unit(\Delta y)}{unit(\Delta x)}$ Note: The Average Rate of Change (ARC) is equal to the slope of the secant line (m_S) passing through the points $P(x_1, y_1)$ and $Q(x_2, y_2)$.	Let $y = f(x)$ be a function and $P(x_1, y_1)$ and $Q(x_2, y_2)$ two points on its graph. The <i>slope</i> of the <i>secant line</i> (m_s) that passes through the points P and Q is given by: $m_s = \frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = ARC$
Ex 1. A rock is launched vertically upward. The height <i>h</i> (in meters) at the time <i>t</i> (in seconds) of the rock is given by $h(t) = 100t - 10r^2$. Find the average velocity (ARC) over the third second of motion.	Ex 2. In the figure below is represented the position h (in kilometers) at the time t (in hours) of a baloon. Describe the motion of the ballon in terms of average velocity.

Reading: Nelson Textbook, Pages 68-75 **Homework**: Nelson Textbook, Page 76: #4, 8, 10